A four phase or (4/2 pole), single stack variable reluctance stepper motor is shown below. Here, (4/2 pole) means that the stator has four poles and the rotor has two poles.
The four phases A, B, C and D are connected to the DC source with the help of a semiconductor, switches SA, SB, SC and SD respectively as shown in the above figure. The phase windings of the stator are energized in the sequence A, B, C, D, A. The rotor aligns itself with the axis of phase A as the winding A is energized. The rotor is stable in this position and cannot move until phase A is de-energized.
Now, the phase B is excited and phase A is disconnected. The rotor moves 90 degrees in the clockwise direction to align with the resultant air gap field which lies along the axis of phase B. Similarly the phase C is energized, and the phase B is disconnected, and the rotor moves again in 90 degrees to align itself with the axis of the phase
Thus, as the Phases are excited in the order as A, B, C, D, A, the rotor moves 90 degrees at each transition step in the clockwise direction. The rotor completes one revolution in 4 steps. The direction of the rotation depends on the sequence of switching the phase and does not depend on the direction of the current flowing through the phase. Thus, the direction can be reversed by changing the phase sequence like A, D, C, B, A.
The magnitude of the step angle of the variable reluctance motor is given as
Related Articles: